Viernes: Sueños filosóficos
Metodología de la filosofía como sistema y no como colección de doctrinas | La tecnología, el lenguaje, la inteligencia, la consciencia - como evolución del aprendizaje mismo | La evolución del aprendizaje es la evolución del ser humano | El aprendizaje del orden más alto - como definición de la filosofía | Sobre la eficiencia irrazonable de la física y la naturaleza en las matemáticas | La tercera regla del aprendizaje | La cuarta regla del aprendizaje | La aplicación de la cuarta regla a las matemáticas como forma de resolver cuestiones de imposibilidad | Filosofía de las matemáticas como aprendizaje | Filosofía de la ciencia como aprendizaje: en lugar de paradigmas - la segunda regla del aprendizaje ("dentro del sistema") | La conexión entre el aprendizaje y el concepto judío de "pacto" [brit] | La contribución de la historización del sistema al aprendizaje, como continuación de Hegel y la genealogía nietzscheana | Direcciones futuras para la filosofía del aprendizaje | ¿Qué había antes del aprendizaje en la filosofía? - Breve historia del aprendizaje | ¿Para qué vinimos al mundo? - Para aprender
Por: El fin del pensamiento en el aprendizaje es el principio
El pensamiento como cáscara - debajo está el aprendizaje. El pensamiento como fachada - detrás está el aprendizaje
(Fuente)- El aprendizaje influirá en toda la filosofía, porque se convertirá en parte del método filosófico: cómo llegó el filósofo a esto. Es decir, no solo sus argumentos desde su mundo, sino también una descripción externa de cómo llegó a su mundo, se considerarán trabajo del filósofo. Por qué, por ejemplo, precisamente el futuro, y no el pasado, en el enfoque de la filosofía del futuro. Y qué hubiera pasado si se hubiera elegido otro tiempo, por ejemplo un presente continuo o un pasado perfecto. Por qué precisamente el yo en Descartes, y qué otras opciones hay (tú, él, ellos, femenino), y cómo cada una crea una filosofía diferente. El filósofo no solo presentará el interior de su método, sino también sus conexiones sistemáticas externas dentro de la filosofía como campo en desarrollo, y explicará qué direcciones del pasado lo llevaron a él y presentará direcciones futuras desde él. Así la filosofía se entenderá no como una colección de métodos y obras, sino como un sistema, como las matemáticas.
- En la filosofía de la mente - la consciencia como mecanismo de aprendizaje. El aprendizaje es lo que crea la consciencia y esta es la solución al enigma de la consciencia. Y el siguiente enigma, el de la inteligencia, se concebirá como aprendizaje no personal, en contraste con el aprendizaje personal. Pero lo que subyace tanto a la consciencia como a la inteligencia es el mecanismo de aprendizaje del cerebro, y por eso estos dos fenómenos aparentemente separados e independientes aparecieron juntos en la evolución. ¿Y qué llevó a ellos? El aprendizaje del lenguaje. Porque a diferencia de los animales, el lenguaje siempre se aprende. ¿Y qué llevó a la capacidad de aprender lenguaje? La tecnología, la capacidad de usar herramientas y aprender a usarlas. Es decir, la tecnología no es una característica nueva del ser humano, que será recordada como el fin del ser humano, sino también como su comienzo, lo que creó al ser humano. Y el lenguaje es la primera tecnología espiritual - una herramienta social. Porque el aprendizaje del uso de herramientas es aprendizaje social, de maestro a alumno, y la herramienta de aprendizaje es el lenguaje. ¿Y por qué el aprendizaje social precedió al personal? Porque el aprendizaje siempre está dentro del sistema. Y la sociedad es el sistema. Y solo al final el individuo también se creó como sistema - y por eso se hizo posible el aprendizaje dentro de él.
- Se puede ver aquí un ascenso cada vez en el orden del fenómeno del aprendizaje: del primer orden de aprendizaje (tecnología) al segundo orden de aprendizaje del aprendizaje (lenguaje) al tercer orden de aprendizaje del aprendizaje del aprendizaje (inteligencia) al cuarto orden de aprendizaje del aprendizaje del aprendizaje del aprendizaje (consciencia). Y todo esto es posible por la naturaleza objetiva del aprendizaje como aprendizaje de, o aprendizaje sobre, y por lo tanto se puede conectar al aprendizaje sobre aprendizaje, aprendizaje sobre aprendizaje sobre aprendizaje, etc. Y el aprendizaje sobre la consciencia es ya la cultura, y dentro de ella el aprendizaje de tercer orden sobre el lenguaje es la literatura, y el aprendizaje de cuarto orden sobre la tecnología es la ciencia. Y el aprendizaje sobre la cultura es el arte. ¿Y qué es el aprendizaje de segundo orden sobre la inteligencia dentro de la cultura? La filosofía.
- La física es la base de las matemáticas - y no al revés. La razón por la que hay matemáticas es la física. Y por lo tanto el problema de la eficiencia irrazonable de las matemáticas en la física y la ciencia es un problema de broma, que surge de un mal idealismo filosófico. Lo que es correcto es - la eficiencia de la física en las matemáticas.
- El espacio-tiempo no es un fenómeno básico, tampoco la materia, tampoco las leyes naturales, y ni siquiera las matemáticas. Todos ellos derivan del fenómeno básico del aprendizaje. El aprendizaje es el mediador entre la capa de información, trivial en la descripción del universo, y la complejidad del universo. Sin aprendizaje no habría nada, nada se construiría o mantendría o desarrollaría. El aprendizaje es el principio más básico del universo (ni siquiera una ley, y ni siquiera una propiedad matemática). El tiempo deriva del desarrollo del aprendizaje, del hecho de que tiene etapas (no hay continuidad en el mundo) y progreso - y por eso tiene dirección. La unidireccionalidad de la orientación es lo que causa el eje del tiempo, y surge como ilusión debido al aprendizaje. El espacio deriva del aprendizaje en el sistema. Dentro del sistema - de aquí surge el universo, y por eso no hay nada fuera del universo, este es el aprendizaje más general, y el sistema más grande. Las leyes naturales no pasaron por fine-tuning por casualidad, o debido al ridículo principio antrópico, sino debido al aprendizaje. Hubo una etapa de aprendizaje que precedió lógicamente al Big Bang, y las leyes naturales cambiaron al principio porque se estaban formando. Las leyes que no llevaron a la complejidad no sobrevivieron, como las matemáticas sin complejidad no son interesantes, y por eso el universo convergió hacia matemáticas complicadas, fractales, profundas. El aprendizaje aspira al límite que es la dirección más interesante. Por eso siempre es impredecible. La idea del observador en la mecánica cuántica no es precisa, la idea correcta es el aprendiz. El ser humano no es casual como la evolución no es casual como el universo no es casual, pero no están planificados, sino que son resultados de un proceso de aprendizaje. La inteligencia no es casual, porque es un proceso de aprendizaje, y el universo está construido desde el principio de aprendizaje. La definición de Dios como el que aprende y de la Presencia Divina [Shejiná] como aprendizaje, y del ser humano como estudiante y por lo tanto de Dios el maestro, es una definición válida (y esta es la afirmación religiosa) aunque también vacía (y esta es la afirmación secular).
- La tercera regla del aprendizaje es: Orientación. El átomo del aprendizaje es una flecha unidireccional, pero parcial, es decir no determina el aprendizaje, como la causalidad, pero tampoco permite todo en arbitrariedad posmoderna, sino que orienta. Precisamente esta parcialidad es más fuerte que el todo o nada. Por ejemplo, un pensamiento previo no es causa del siguiente pensamiento, pero sí orientación. Un nuevo dato en la realidad no es causa de una nueva hipótesis en el aprendizaje, sino orientación hacia nuevas hipótesis. Un maestro no da instrucciones al alumno, y no lo programa, sino que le da orientaciones, y así el alumno aprende. Los algoritmos que aprenden son algoritmos que tratan los datos como orientaciones y no como instrucciones. La diferencia entre programación y aprendizaje es una caja negra que el exterior no controla, sino que aprende con sus propias herramientas, con ayuda de orientaciones.
- La cuarta regla del aprendizaje es: Mujeres y hombres. En los sistemas naturales de aprendizaje hay dos tipos de agentes, donde un tipo (mujeres) evalúa lo que hizo el otro tipo (hombres) y elige de él. Cada capa de neuronas evalúa el desempeño de la anterior y elige de ella una ponderación para pasar a la siguiente generación/capa. Los hombres son búsqueda y las mujeres son optimización. En los hombres hay mutaciones y las mujeres critican. Los hombres son creadores y las mujeres son curadoras. Los hombres escriben y las mujeres editan. Los hombres son sitios y las mujeres son nodos tipo "hub", de selección de sitios. Los filósofos son los hombres y los lectores son las mujeres. Los hombres son los estudiantes y las mujeres son las examinadoras. Los hombres y las mujeres juntos intentan resolver un problema no polinomial, es decir uno que no tiene solución eficiente, mediante soluciones (hombres) que son examinadas por evaluadores (mujeres), que crean de ellas combinaciones para la siguiente generación, donde serán evaluadas nuevamente por las mujeres de la siguiente generación. De hecho, no hay evolución, solo co-evolución. A veces los depredadores son los evaluadores de las presas. Y esto también es la red social frente a la red de sitios: la primera red da evaluaciones a la segunda red, o elige de la segunda red y comparte.
- El aprendizaje es el concepto más prometedor para las matemáticas en el próximo siglo. Debido a la comprensión de las matemáticas como lenguaje hay un problema en probar resultados negativos - qué no se puede hacer. Estos son los grandes problemas en matemáticas hoy, y no los problemas constructivos, y el aprendizaje puede resolverlos, porque es una conceptualización de lo constructivo - por encima de él. Así la pregunta qué no se puede aprender, la cuestión de los límites del aprendizaje, permitirá resultados. El problema P = NP surge de la incapacidad de encontrar límites inferiores, y nuevas definiciones de aprendizaje de algoritmos podrán descomponer los algoritmos eficientes en construcción constructiva y aprendiente, y por lo tanto podrán dar resultados negativos - qué no pueden hacer. Como la teoría de Galois descompuso ecuaciones en construcción constructiva y por lo tanto dio resultados negativos - qué no se puede hacer. O el sistema de coordenadas cartesiano - sobre geometría, y muchos son los ejemplos de la historia de las matemáticas. ¿Cómo por ejemplo construimos la contradicción? Si P es igual a NP construiremos un sistema de aprendizaje ideal universal, y encontraremos una función que no aprende. Si se puede aprender toda polinomial en construcción, entonces si se puede aprender solución para NP entonces veremos que uno de sus componentes también debe resolver un problema NP, y así por inducción bajaremos hasta el absurdo. También el problema de Riemann se entenderá como problema de aprendizaje de los primos, es decir el problema del puente entre la descomposición de la multiplicación y la descomposición de la suma. Hay números que no hay método para llegar a ellos excepto sumar, no se pueden comprimir y presentarlos en método de multiplicación. Es decir, ¿se pueden comprimir todos los naturales, y por lo tanto aprenderlos como método? Si hubiera un número finito de primos ciertamente, y si no, entonces depende de su frecuencia cuánto comprime. Por lo tanto el aprendizaje de los naturales es la comprensión de los primos. Los dos problemas son probar que no hay método. Y por lo tanto resultados sobre aprendizaje de métodos son relevantes para ellos.
- El aprendizaje permitirá resultados y comprensiones en todas las matemáticas, por ejemplo el aprendizaje de grupos dará resultados sobre los grupos, y así también en lógica mediante definiciones de aprendizaje de la lógica, lo que hoy está fuera del formalismo, porque hoy la pregunta cómo se prueba se refiere solo a las reglas del juego y no a cómo se juega bien. Por ejemplo: cómo se aprende a probar en matemáticas, cómo se aprenden matemáticas, es decir se aprenden nuevas pruebas, y no solo cómo se prueba en matemáticas (es decir qué es el juego del lenguaje - solo las reglas del juego). En este sentido las matemáticas mismas se concebirán como aprendizaje, y no como cuerpo de conocimiento (datos), y tampoco como lógica o como lenguaje, sino como algoritmos de aprendizaje y prueba. Por lo tanto - un teorema con prueba es una demostración. Enseña cómo probar. El teorema es solo el comienzo, su significado está en su uso, es decir en el aprendizaje matemático. Estas son matemáticas vivas y en desarrollo. Y en ellas hay enorme importancia a cómo se aprenden las definiciones, y no solo los teoremas. El aprendizaje es la síntesis entre descubrimiento e invención. El descubrimiento es más apropiado para la prueba, y la invención más apropiada para las definiciones. Una de las grandes debilidades de la enseñanza de las matemáticas hoy es el método en que explican cómo llegaron a los teoremas, de forma históricamente incorrecta (y también incorrecta en términos de aprendizaje), sino que la explicación es la prueba. Pero una debilidad aún mayor es que explican aún menos cómo llegaron a las definiciones, cuando históricamente la lucha por encontrar las definiciones correctas fue la más difícil, y los teoremas son más fáciles. La investigación en matemáticas siempre se concebirá como búsqueda de pruebas, y no podrás definir investigación como búsqueda de definiciones valiosas, y esto retrasa la creación de nuevos campos.
- Aprendizaje en (la abreviatura de la segunda regla: aprendizaje dentro del sistema) = elección y luego evaluación (pacto), y no evaluación y luego elección (cita). Es decir intentas construir una relación con él y no examinas si es adecuado para una relación. Esto es lo que permite el aprendizaje. Mientras no haya cruzado la puerta de la elección - todavía está afuera, y el aprendizaje no está dentro del sistema, y aún no se ha creado un sistema de pareja. La pareja son ciclos de retroalimentación dentro del sistema, y salir son ciclos de retroalimentación fuera del sistema.
- Se necesita más pensamiento sobre el futuro en el método de la filosofía, y más pensamiento sobre la filosofía como campo de aprendizaje - y de nuevo, no aprendizaje objetivo desde fuera (aprender la filosofía como conocimiento de un maestro) sino aprendizaje filosófico (desarrollo de la filosofía misma) - aprendizaje dentro de la filosofía desde dentro. Similar a la diferencia entre aprender matemáticas en la escuela, no de forma creativa, y aprender matemáticas en investigación académica, aprendizaje como creación. O a la diferencia entre aprendizaje en erudición y aprendizaje en profundidad en el mundo del estudio de la Torá, o al aprendizaje como conocimiento en la Mishná al aprendizaje como estudio en el Talmud. Por lo tanto la filosofía necesita pasar a un nuevo tipo de escritura, más ars poética, que explique cómo realmente se aprendió, similar a la diferencia entre presentar la historia de las matemáticas y cómo se encontró la prueba y qué errores y atascos hubo en el camino, y una imagen ideal de las pruebas perfectas finales en matemáticas, como se enseñan matemáticas hoy. Esto es lo que crea la imagen idealista falsa y estéril de las matemáticas y la filosofía como campos del espíritu puro - la ilusión anti-aprendizaje que es la enseñanza. Wittgenstein y Agustín - toda filosofía seria comienza con una confesión, y por eso es importante la confesión sincera: cómo se desarrolló tu línea de pensamiento en la práctica, dónde te atascaste y dónde cambiaste de dirección y dónde no entendiste, en contraste con las razones retrospectivas que encontraste. Es decir una descripción verdadera de tu aprendizaje, y no ideal.
- En el próximo siglo podrán desarrollarse varias escuelas filosóficas que saldrán de la filosofía del lenguaje. En Inglaterra la escuela de la filosofía jurídica y en la filosofía continental la escuela de la filosofía del pensamiento. Otros conceptos sobre los que se puede construir una escuela: creatividad, futuro, inteligencia, consciencia, tecnología, arte. Por ejemplo: filosofía de la inteligencia, filosofía de la tecnología, pero en el sentido de la filosofía del lenguaje - no solo filosofía que trata sobre el lenguaje (como objeto de la filosofía), sino una que se constituye desde el concepto del lenguaje, que el lenguaje se convierte en la base de toda la filosofía (es decir la filosofía es objeto del lenguaje). Por ejemplo, hoy existe una filosofía del arte en el primer sentido pero no en el segundo. Pero - la escuela más importante, unificadora, es la filosofía del aprendizaje. Y ella es el centro de todas estas escuelas (lo que no significa que no puedan crecer de ella después). De hecho, una de las pruebas (¡de aprendizaje!) de su importancia es ser el centro estadístico de todas las flechas alrededor, porque está justo en el blanco.
- El desarrollo de la historia de las concepciones en la filosofía de la máquina de aprendizaje misma: si una vez fue el intelecto, luego la razón, luego la lógica, luego la racionalidad, luego la inteligencia, luego el pensamiento, finalmente - el aprendizaje. ¿Y qué resulta? Que la filosofía misma es el aprendizaje. Cada filosofía contiene todas las anteriores como caso particular, y por eso es tan difícil desviarse de ella al principio, porque es un conjunto que contiene todo. Y así la historia de la filosofía es como una matrioshka invertida, que cada vez se encuentra desde fuera otra matrioshka oculta que contiene a la grande anterior.
- Por nuestra propia naturaleza lo que nuestro cerebro busca no es la verdad, sino una nueva idea, porque ese es el aprendizaje. El error de toda la filosofía es que siempre buscó la verdad, y siempre encontró una nueva idea. La verdad es una idea vieja, y no particularmente exitosa, porque realmente no existe tal cosa, pero esto no nos abandona a la arbitrariedad, precisamente debido a - el aprendizaje. El aprendizaje no es búsqueda de la verdad, sino construcción de verdad. Siempre buscaron la verdad, pero lo que realmente querían era la acumulación y la credibilidad del aprendizaje, y querían conceptualizarlas en la idea de la verdad - porque hay algo realmente aterrador en el aprendizaje. El mundo está realmente abierto.
- El propósito de la vida: aprendizaje.